Warning: This document is for an old version of Rasa. The latest version is 1.10.8.

Deploying Your Rasa Assistant

This page explains when and how to deploy an assistant built with Rasa. It will allow you to make your assistant available to users and set you up with a production-ready environment.

When to Deploy Your Assistant

The best time to deploy your assistant and make it available to test users is once it can handle the most important happy paths or is what we call a minimum viable assistant.

The recommended deployment methods described below make it easy to share your assistant with test users via the share your assistant feature in Rasa X. Then, when you’re ready to make your assistant available via one or more Messaging and Voice Channels, you can easily add them to your existing deployment set up.

Alternative Deployment Methods

Docker Compose

You can also run Rasa X in a Docker Compose setup, without the cluster environment. We have a quick install script for doing so, as well as manual instructions for any custom setups.

Rasa Open Source Only Deployment

It is also possible to deploy a Rasa assistant without Rasa X using Docker Compose. To do so, you can build your Rasa Assistant locally or in Docker. Then you can deploy your model in Docker Compose.

Deploying Your Action Server

Building an Action Server Image

If you build an image that includes your action code and store it in a container registry, you can run it as part of your deployment, without having to move code between servers. In addition, you can add any additional dependencies of systems or Python libraries that are part of your action code but not included in the base rasa/rasa-sdk image.

To create your image:

  1. Move your actions code to a folder actions in your project directory. Make sure to also add an empty actions/__init__.py file:

    mkdir actions
    mv actions.py actions/actions.py
    touch actions/__init__.py  # the init file indicates actions.py is a python module
    

    The rasa/rasa-sdk image will automatically look for the actions in actions/actions.py.

  2. If your actions have any extra dependencies, create a list of them in a file, actions/requirements-actions.txt.

  3. Create a file named Dockerfile in your project directory, in which you’ll extend the official SDK image, copy over your code, and add any custom dependencies (if necessary). For example:

    # Extend the official Rasa SDK image
    FROM rasa/rasa-sdk:2.0.0a1
    
    # Use subdirectory as working directory
    WORKDIR /app
    
    # Copy any additional custom requirements, if necessary (uncomment next line)
    # COPY actions/requirements-actions.txt ./
    
    # Change back to root user to install dependencies
    USER root
    
    # Install extra requirements for actions code, if necessary (uncomment next line)
    # RUN pip install -r requirements-actions.txt
    
    # Copy actions folder to working directory
    COPY ./actions /app/actions
    
    # By best practices, don't run the code with root user
    USER 1001

You can then build the image via the following command:

docker build . -t <account_username>/<repository_name>:<custom_image_tag>

The <custom_image_tag> should reference how this image will be different from others. For example, you could version or date your tags, as well as create different tags that have different code for production and development servers. You should create a new tag any time you update your code and want to re-deploy it.

Using your Custom Action Server Image

If you’re building this image to make it available from another server, for example a Rasa X or Rasa Enterprise deployment, you should push the image to a cloud repository.

This documentation assumes you are pushing your images to DockerHub. DockerHub will let you host multiple public repositories and one private repository for free. Be sure to first create an account and create a repository to store your images. You could also push images to a different Docker registry, such as Google Container Registry, Amazon Elastic Container Registry, or Azure Container Registry.

You can push the image to DockerHub via:

docker login --username <account_username> --password <account_password>
docker push <account_username>/<repository_name>:<custom_image_tag>

To authenticate and push images to a different container registry, please refer to the documentation of your chosen container registry.

How you reference the custom action image will depend on your deployment. Pick the relevant documentation for your deployment: