notice
This is unreleased documentation for Rasa Open Source Documentation Master/Unreleased version.
For the latest released documentation, see the latest version (2.2.x).
rasa.test
plot_core_results
Plot core model comparison graph.
Arguments:
output_directory
- path to the output directorynumber_of_examples
- number of examples per run
test_core
Tests a trained Core model against a set of test stories.
test_nlu
Tests the NLU Model.
compare_nlu_models
Trains multiple models, compares them and saves the results.
plot_nlu_results
Plot NLU model comparison graph.
Arguments:
output_directory
- path to the output directorynumber_of_examples
- number of examples per run
get_evaluation_metrics
Compute the f1, precision, accuracy and summary report from sklearn.
Arguments:
targets
- target labelspredictions
- predicted labelsoutput_dict
- if True sklearn returns a summary report as dict, if False the report is in string formatexclude_label
- labels to exclude from evaluation
Returns:
Report from sklearn, precision, f1, and accuracy values.
clean_labels
Remove None
labels. sklearn metrics do not support them.
Arguments:
labels
- list of labels
Returns:
Cleaned labels.
get_unique_labels
Get unique labels. Exclude 'exclude_label' if specified.
Arguments:
targets
- labelsexclude_label
- label to exclude
Returns:
Unique labels.