Version: 3.x
rasa.nlu.featurizers.dense_featurizer._lm_featurizer
LanguageModelFeaturizer Objects
class LanguageModelFeaturizer(DenseFeaturizer)
Featurizer using transformer-based language models.
The transformers(https://github.com/huggingface/transformers) library is used to load pre-trained language models like BERT, GPT-2, etc. The component also tokenizes and featurizes dense featurizable attributes of each message.
required_components
| @classmethod
| required_components(cls) -> List[Type[Component]]
Packages needed to be installed.
__init__
| __init__(component_config: Optional[Dict[Text, Any]] = None, skip_model_load: bool = False) -> None
Initializes LanguageModelFeaturizer with the specified model.
Arguments:
component_config
- Configuration for the component.skip_model_load
- Skip loading the model for pytests.
cache_key
| @classmethod
| cache_key(cls, component_meta: Dict[Text, Any], model_metadata: Metadata) -> Optional[Text]
Cache the component for future use.
Arguments:
component_meta
- configuration for the component.model_metadata
- configuration for the whole pipeline.Returns
- key of the cache for future retrievals.
required_packages
| @classmethod
| required_packages(cls) -> List[Text]
Packages needed to be installed.
train
| train(training_data: TrainingData, config: Optional[RasaNLUModelConfig] = None, **kwargs: Any, ,) -> None
Compute tokens and dense features for each message in training data.
Arguments:
training_data
- NLU training data to be tokenized and featurizedconfig
- NLU pipeline config consisting of all components.
process
| process(message: Message, **kwargs: Any) -> None
Process an incoming message by computing its tokens and dense features.
Arguments:
message
- Incoming message object