notice
This is documentation for Rasa Documentation v2.x, which is no longer actively maintained.
For up-to-date documentation, see the latest version (3.x).
Version: 2.x
rasa.test
plot_core_results
plot_core_results(output_directory: Text, number_of_examples: List[int]) -> None
Plot core model comparison graph.
Arguments:
output_directory
- path to the output directorynumber_of_examples
- number of examples per run
test_core
test_core(model: Optional[Text] = None, stories: Optional[Text] = None, output: Text = DEFAULT_RESULTS_PATH, additional_arguments: Optional[Dict] = None) -> None
Tests a trained Core model against a set of test stories.
test_nlu
async test_nlu(model: Optional[Text], nlu_data: Optional[Text], output_directory: Text = DEFAULT_RESULTS_PATH, additional_arguments: Optional[Dict] = None)
Tests the NLU Model.
compare_nlu_models
async compare_nlu_models(configs: List[Text], nlu: Text, output: Text, runs: int, exclusion_percentages: List[int])
Trains multiple models, compares them and saves the results.
plot_nlu_results
plot_nlu_results(output_directory: Text, number_of_examples: List[int]) -> None
Plot NLU model comparison graph.
Arguments:
output_directory
- path to the output directorynumber_of_examples
- number of examples per run
get_evaluation_metrics
get_evaluation_metrics(targets: Iterable[Any], predictions: Iterable[Any], output_dict: bool = False, exclude_label: Optional[Text] = None) -> Tuple[Union[Text, Dict[Text, Dict[Text, float]]], float, float, float]
Compute the f1, precision, accuracy and summary report from sklearn.
Arguments:
targets
- target labelspredictions
- predicted labelsoutput_dict
- if True sklearn returns a summary report as dict, if False the report is in string formatexclude_label
- labels to exclude from evaluation
Returns:
Report from sklearn, precision, f1, and accuracy values.
clean_labels
clean_labels(labels: Iterable[Text]) -> List[Text]
Remove None
labels. sklearn metrics do not support them.
Arguments:
labels
- list of labels
Returns:
Cleaned labels.
get_unique_labels
get_unique_labels(targets: Iterable[Text], exclude_label: Optional[Text]) -> List[Text]
Get unique labels. Exclude 'exclude_label' if specified.
Arguments:
targets
- labelsexclude_label
- label to exclude
Returns:
Unique labels.