Version: 3.x

DefaultV1RecipeRegisterException Objects

class DefaultV1RecipeRegisterException(RasaException)

If you register a class which is not of type GraphComponent.

DefaultV1Recipe Objects

class DefaultV1Recipe(Recipe)

Recipe which converts the normal model config to train and predict graph.

ComponentType Objects

class ComponentType(Enum)

Enum to categorize and place custom components correctly in the graph.


| __init__() -> None

Creates recipe.

RegisteredComponent Objects

class RegisteredComponent()

Describes a graph component which was registered with the decorator.


| @classmethod
| register(cls, component_types: Union[ComponentType, List[ComponentType]], is_trainable: bool, model_from: Optional[Text] = None) -> Callable[[Type[GraphComponent]], Type[GraphComponent]]

This decorator can be used to register classes with the recipe.


  • component_types - Describes the types of a component which are then used to place the component in the graph.
  • is_trainable - True if the component requires training.
  • model_from - Can be used if this component requires a pre-loaded model such as SpacyNLP or MitieNLP.


The registered class.


| graph_config_for_recipe(config: Dict, cli_parameters: Dict[Text, Any], training_type: TrainingType = TrainingType.BOTH, is_finetuning: bool = False) -> GraphModelConfiguration

Converts the default config to graphs (see interface for full docstring).


| @staticmethod
| auto_configure(config_file_path: Optional[Text], config: Dict, training_type: Optional[TrainingType] = TrainingType.BOTH) -> Tuple[Dict[Text, Any], Set[str], Set[str]]

Determine configuration from auto-filled configuration file.

Keys that are provided and have a value in the file are kept. Keys that are not provided are configured automatically.

Note that this needs to be called explicitly; ie. we cannot auto-configure automatically from importers because importers are not allowed to access code outside of rasa.shared.


  • config_file_path - The path to the configuration file.
  • config - Configuration in dictionary format.
  • training_type - Optional training type to auto-configure. By default both core and NLU will be auto-configured.


| @staticmethod
| complete_config(config: Dict[Text, Any], keys_to_configure: Set[Text]) -> Dict[Text, Any]

Complete a config by adding automatic configuration for the specified keys.


  • config - The provided configuration.
  • keys_to_configure - Keys to be configured automatically (e.g. policies).


The resulting configuration including both the provided and the automatically configured keys.