Version: 3.x

rasa.nlu.featurizers.sparse_featurizer.regex_featurizer

RegexFeaturizer Objects

@DefaultV1Recipe.register(
DefaultV1Recipe.ComponentType.MESSAGE_FEATURIZER, is_trainable=True
)
class RegexFeaturizer(SparseFeaturizer, GraphComponent)

Adds message features based on regex expressions.

required_components

@classmethod
def required_components(cls) -> List[Type]

Components that should be included in the pipeline before this component.

get_default_config

@staticmethod
def get_default_config() -> Dict[Text, Any]

Returns the component's default config.

__init__

def __init__(config: Dict[Text, Any],
model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext,
known_patterns: Optional[List[Dict[Text, Text]]] = None) -> None

Constructs new features for regexes and lookup table using regex expressions.

Arguments:

  • config - Configuration for the component.
  • model_storage - Storage which graph components can use to persist and load themselves.
  • resource - Resource locator for this component which can be used to persist and load itself from the model_storage.
  • execution_context - Information about the current graph run.
  • known_patterns - Regex Patterns the component should pre-load itself with.

create

@classmethod
def create(cls, config: Dict[Text, Any], model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext) -> RegexFeaturizer

Creates a new untrained component (see parent class for full docstring).

train

def train(training_data: TrainingData) -> Resource

Trains the component with all patterns extracted from training data.

process_training_data

def process_training_data(training_data: TrainingData) -> TrainingData

Processes the training examples (see parent class for full docstring).

process

def process(messages: List[Message]) -> List[Message]

Featurizes all given messages in-place.

Returns:

the given list of messages which have been modified in-place

load

@classmethod
def load(cls, config: Dict[Text, Any], model_storage: ModelStorage,
resource: Resource, execution_context: ExecutionContext,
**kwargs: Any) -> RegexFeaturizer

Loads trained component (see parent class for full docstring).

validate_config

@classmethod
def validate_config(cls, config: Dict[Text, Any]) -> None

Validates that the component is configured properly.