Version: 3.x
rasa.nlu.classifiers.mitie_intent_classifier
MitieIntentClassifier Objects
@DefaultV1Recipe.register(
DefaultV1Recipe.ComponentType.INTENT_CLASSIFIER,
is_trainable=True,
model_from="MitieNLP",
)
class MitieIntentClassifier(GraphComponent, IntentClassifier)
Intent classifier which uses the mitie
library.
required_components
@classmethod
def required_components(cls) -> List[Type]
Components that should be included in the pipeline before this component.
get_default_config
@staticmethod
def get_default_config() -> Dict[Text, Any]
Returns default config (see parent class for full docstring).
__init__
def __init__(config: Dict[Text, Any],
model_storage: ModelStorage,
resource: Resource,
clf: Optional["mitie.text_categorizer"] = None) -> None
Constructs a new intent classifier using the MITIE framework.
required_packages
@staticmethod
def required_packages() -> List[Text]
Lists required dependencies (see parent class for full docstring).
train
def train(training_data: TrainingData, model: MitieModel) -> Resource
Trains classifier.
Arguments:
training_data
- The NLU training data.model
- The loaded mitie model provided byMitieNLP
.
Returns:
The resource locator for the trained classifier.
process
def process(messages: List[Message], model: MitieModel) -> List[Message]
Make intent predictions using mitie
.
Arguments:
messages
- The message which the intents should be predicted for.model
- The loaded mitie model provided byMitieNLP
.
create
@classmethod
def create(cls, config: Dict[Text, Any], model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext) -> MitieIntentClassifier
Creates component for training see parent class for full docstring).
load
@classmethod
def load(cls, config: Dict[Text, Any], model_storage: ModelStorage,
resource: Resource, execution_context: ExecutionContext,
**kwargs: Any) -> MitieIntentClassifier
Loads component for inference see parent class for full docstring).