Version: 3.x

rasa.shared.nlu.training_data.training_data

TrainingData Objects

class TrainingData()

Holds loaded intent and entity training data.

fingerprint

def fingerprint() -> Text

Fingerprint the training data.

Returns:

hex string as a fingerprint of the training data.

label_fingerprint

def label_fingerprint() -> Text

Fingerprints the labels in the training data.

Returns:

hex string as a fingerprint of the training data labels.

merge

def merge(*others: Optional["TrainingData"]) -> "TrainingData"

Return merged instance of this data with other training data.

Arguments:

  • others - other training data instances to merge this one with

Returns:

Merged training data object. Merging is not done in place, this will be a new instance.

filter_training_examples

def filter_training_examples(
condition: Callable[[Message], bool]) -> "TrainingData"

Filter training examples.

Arguments:

  • condition - A function that will be applied to filter training examples.

Returns:

  • TrainingData - A TrainingData with filtered training examples.

__hash__

def __hash__() -> int

Calculate hash for the training data object.

Returns:

Hash of the training data object.

sanitize_examples

@staticmethod
def sanitize_examples(examples: List[Message]) -> List[Message]

Makes sure the training data is clean.

Remove trailing whitespaces from intent and response annotations and drop duplicate examples.

nlu_examples

@lazy_property
def nlu_examples() -> List[Message]

Return examples which have come from NLU training data.

E.g. If the example came from a story or domain it is not included.

Returns:

List of NLU training examples.

intent_examples

@lazy_property
def intent_examples() -> List[Message]

Returns the list of examples that have intent.

response_examples

@lazy_property
def response_examples() -> List[Message]

Returns the list of examples that have response.

entity_examples

@lazy_property
def entity_examples() -> List[Message]

Returns the list of examples that have entities.

intents

@lazy_property
def intents() -> Set[Text]

Returns the set of intents in the training data.

action_names

@lazy_property
def action_names() -> Set[Text]

Returns the set of action names in the training data.

retrieval_intents

@lazy_property
def retrieval_intents() -> Set[Text]

Returns the total number of response types in the training data.

number_of_examples_per_intent

@lazy_property
def number_of_examples_per_intent() -> Dict[Text, int]

Calculates the number of examples per intent.

number_of_examples_per_response

@lazy_property
def number_of_examples_per_response() -> Dict[Text, int]

Calculates the number of examples per response.

entities

@lazy_property
def entities() -> Set[Text]

Returns the set of entity types in the training data.

entity_roles

@lazy_property
def entity_roles() -> Set[Text]

Returns the set of entity roles in the training data.

entity_groups

@lazy_property
def entity_groups() -> Set[Text]

Returns the set of entity groups in the training data.

entity_roles_groups_used

def entity_roles_groups_used() -> bool

Checks if any entity roles or groups are used in the training data.

number_of_examples_per_entity

@lazy_property
def number_of_examples_per_entity() -> Dict[Text, int]

Calculates the number of examples per entity.

sort_regex_features

def sort_regex_features() -> None

Sorts regex features lexicographically by name+pattern

nlu_as_json

def nlu_as_json(**kwargs: Any) -> Text

Represent this set of training examples as json.

nlg_as_yaml

def nlg_as_yaml() -> Text

Generates yaml representation of the response phrases (NLG) of TrainingData.

Returns:

responses in yaml format as a string

nlu_as_yaml

def nlu_as_yaml() -> Text

Generates YAML representation of NLU of TrainingData.

Returns:

data in YAML format as a string

persist_nlu

def persist_nlu(filename: Text = DEFAULT_TRAINING_DATA_OUTPUT_PATH) -> None

Saves NLU to a file.

persist_nlg

def persist_nlg(filename: Text) -> None

Saves NLG to a file.

get_nlg_persist_filename

@staticmethod
def get_nlg_persist_filename(nlu_filename: Text) -> Text

Returns the full filename to persist NLG data.

persist

def persist(
dir_name: Text,
filename: Text = DEFAULT_TRAINING_DATA_OUTPUT_PATH) -> Dict[Text, Any]

Persists this training data to disk and returns necessary information to load it again.

sorted_entities

def sorted_entities() -> List[Any]

Extract all entities from examples and sorts them by entity type.

validate

def validate() -> None

Ensures that the loaded training data is valid.

Checks that the data has a minimum of certain training examples.

train_test_split

def train_test_split(
train_frac: float = 0.8,
random_seed: Optional[int] = None
) -> Tuple["TrainingData", "TrainingData"]

Split into a training and test dataset, preserving the fraction of examples per intent.

split_nlu_examples

def split_nlu_examples(train_frac: float,
random_seed: Optional[int] = None) -> Tuple[list, list]

Split the training data into a train and test set.

Arguments:

  • train_frac - percentage of examples to add to the training set.
  • random_seed - random seed used to shuffle examples.

Returns:

Test and training examples.

is_empty

def is_empty() -> bool

Checks if any training data was loaded.

contains_no_pure_nlu_data

def contains_no_pure_nlu_data() -> bool

Checks if any NLU training data was loaded.

has_e2e_examples

def has_e2e_examples() -> bool

Checks if there are any training examples from e2e stories.

list_to_str

def list_to_str(lst: List[Text],
delim: Text = ", ",
quote: Text = "'") -> Text

Converts list to a string.

Arguments:

  • lst - The list to convert.
  • delim - The delimiter that is used to separate list inputs.
  • quote - The quote that is used to wrap list inputs.

Returns:

The string.