notice
This is documentation for Rasa & Rasa Pro Documentation v2.x, which is no longer actively maintained.
For up-to-date documentation, see the latest version (3.x).
Version: 2.x
rasa.utils.tensorflow.temp_keras_modules
TmpKerasModel Objects
class TmpKerasModel(tf.keras.models.Model)
Temporary solution. Keras model that uses a custom data adapter inside fit.
fit
| fit(x: Optional[
| Union[np.ndarray, tf.Tensor, tf.data.Dataset, tf.keras.utils.Sequence]
| ] = None, y: Optional[
| Union[np.ndarray, tf.Tensor, tf.data.Dataset, tf.keras.utils.Sequence]
| ] = None, batch_size: Optional[int] = None, epochs: int = 1, verbose: int = 1, callbacks: Optional[List[Callback]] = None, validation_split: float = 0.0, validation_data: Optional[Any] = None, shuffle: bool = True, class_weight: Optional[Dict[int, float]] = None, sample_weight: Optional[np.ndarray] = None, initial_epoch: int = 0, steps_per_epoch: Optional[int] = None, validation_steps: Optional[int] = None, validation_batch_size: Optional[int] = None, validation_freq: int = 1, max_queue_size: int = 10, workers: int = 1, use_multiprocessing: bool = False) -> History
Trains the model for a fixed number of epochs (iterations on a dataset).
Arguments:
x
- Input data.y
- Target data.batch_size
- Number of samples per gradient update.epochs
- Number of epochs to train the model.verbose
- Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.callbacks
- List ofkeras.callbacks.Callback
instances.validation_split
- Fraction of the training data to be used as validation data.validation_data
- Data on which to evaluate the loss and any model metrics at the end of each epoch.shuffle
- whether to shuffle the training data before each epochclass_weight
- Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only).sample_weight
- Optional Numpy array of weights for the training samples, used for weighting the loss function (during training only).initial_epoch
- Epoch at which to start trainingsteps_per_epoch
- Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch.validation_steps
- Total number of steps (batches of samples) to draw before stopping when performing validation at the end of every epoch.validation_batch_size
- Number of samples per validation batch.validation_freq
- specifies how many training epochs to run before a new validation run is performedmax_queue_size
- Maximum size for the generator queue.workers
- Maximum number of processes to spin up when using process-based threading.use_multiprocessing
- IfTrue
, use process-based threading.
Returns:
A History
object. Its History.history
attribute is
a record of training loss values and metrics values
at successive epochs, as well as validation loss values
and validation metrics values (if applicable).
Raises:
RuntimeError
- 1. If the model was never compiled or, 2. Ifmodel.fit
is wrapped intf.function
.ValueError
- In case of mismatch between the provided input data and what the model expects.
CustomDataHandler Objects
class CustomDataHandler(DataHandler)
Handles iterating over epoch-level tf.data.Iterator
objects.
enumerate_epochs
| enumerate_epochs() -> Generator[Tuple[int, Iterator], None, None]
Yields (epoch, tf.data.Iterator)
.