notice
This is unreleased documentation for Rasa Documentation Main/Unreleased version.
For the latest released documentation, see the latest version (3.x).
Version: Main/Unreleased
rasa.model_training
TrainingResult Objects
class TrainingResult(NamedTuple)
Holds information about the results of training.
get_unresolved_slots
def get_unresolved_slots(domain: Domain, stories: StoryGraph) -> List[Text]
Returns a list of unresolved slots.
Arguments:
domain
- The domain.stories
- The story graph.
Returns:
A list of unresolved slots.
train
def train(domain: Text,
config: Text,
training_files: Optional[Union[Text, List[Text]]],
output: Text = rasa.shared.constants.DEFAULT_MODELS_PATH,
dry_run: bool = False,
force_training: bool = False,
fixed_model_name: Optional[Text] = None,
persist_nlu_training_data: bool = False,
core_additional_arguments: Optional[Dict] = None,
nlu_additional_arguments: Optional[Dict] = None,
model_to_finetune: Optional[Text] = None,
finetuning_epoch_fraction: float = 1.0) -> TrainingResult
Trains a Rasa model (Core and NLU).
Arguments:
domain
- Path to the domain file.config
- Path to the config file.training_files
- List of paths to training data files.output
- Output directory for the trained model.dry_run
- IfTrue
then no training will be done, and the information about whether the training needs to be done will be printed.force_training
- IfTrue
retrain model even if data has not changed.fixed_model_name
- Name of model to be stored.persist_nlu_training_data
-True
if the NLU training data should be persisted with the model.config
1 - Additional training parameters for core training.config
2 - Additional training parameters forwarded to training method of each NLU component.config
3 - Optional path to a model which should be finetuned or a directory in case the latest trained model should be used.config
4 - The fraction currently specified training epochs in the model configuration which should be used for finetuning.
Returns:
An instance of config
5.
train_core
def train_core(domain: Union[Domain, Text],
config: Text,
stories: Text,
output: Text,
fixed_model_name: Optional[Text] = None,
additional_arguments: Optional[Dict] = None,
model_to_finetune: Optional[Text] = None,
finetuning_epoch_fraction: float = 1.0) -> Optional[Text]
Trains a Core model.
Arguments:
domain
- Path to the domain file.config
- Path to the config file for Core.stories
- Path to the Core training data.output
- Output path.fixed_model_name
- Name of model to be stored.additional_arguments
- Additional training parameters.model_to_finetune
- Optional path to a model which should be finetuned or a directory in case the latest trained model should be used.finetuning_epoch_fraction
- The fraction currently specified training epochs in the model configuration which should be used for finetuning.
Returns:
Path to the model archive.
train_nlu
def train_nlu(config: Text,
nlu_data: Optional[Text],
output: Text,
fixed_model_name: Optional[Text] = None,
persist_nlu_training_data: bool = False,
additional_arguments: Optional[Dict] = None,
domain: Optional[Union[Domain, Text]] = None,
model_to_finetune: Optional[Text] = None,
finetuning_epoch_fraction: float = 1.0) -> Optional[Text]
Trains an NLU model.
Arguments:
config
- Path to the config file for NLU.nlu_data
- Path to the NLU training data.output
- Output path.fixed_model_name
- Name of the model to be stored.persist_nlu_training_data
-True
if the NLU training data should be persisted with the model.additional_arguments
- Additional training parameters which will be passed to thetrain
method of each component.domain
- Path to the optional domain file/Domain object.model_to_finetune
- Optional path to a model which should be finetuned or a directory in case the latest trained model should be used.nlu_data
0 - The fraction currently specified training epochs in the model configuration which should be used for finetuning.
Returns:
Path to the model archive.