notice

This is unreleased documentation for Rasa Documentation Main/Unreleased version.
For the latest released documentation, see the latest version (3.x).

Version: Main/Unreleased

rasa.nlu.featurizers.dense_featurizer.mitie_featurizer

MitieFeaturizer Objects

@DefaultV1Recipe.register(
DefaultV1Recipe.ComponentType.MESSAGE_FEATURIZER,
is_trainable=False,
model_from="MitieNLP",
)
class MitieFeaturizer(DenseFeaturizer, GraphComponent)

A class that featurizes using Mitie.

required_components

@classmethod
def required_components(cls) -> List[Type]

Components that should be included in the pipeline before this component.

get_default_config

@staticmethod
def get_default_config() -> Dict[Text, Any]

Returns the component's default config.

required_packages

@staticmethod
def required_packages() -> List[Text]

Any extra python dependencies required for this component to run.

__init__

def __init__(config: Dict[Text, Any],
execution_context: ExecutionContext) -> None

Instantiates a new MitieFeaturizer instance.

create

@classmethod
def create(cls, config: Dict[Text, Any], model_storage: ModelStorage,
resource: Resource,
execution_context: ExecutionContext) -> MitieFeaturizer

Creates a new untrained component (see parent class for full docstring).

validate_config

@classmethod
def validate_config(cls, config: Dict[Text, Any]) -> None

Validates that the component is configured properly.

ndim

def ndim(feature_extractor: "mitie.total_word_feature_extractor") -> int

Returns the number of dimensions.

process

def process(messages: List[Message], model: MitieModel) -> List[Message]

Featurizes all given messages in-place.

Returns:

The given list of messages which have been modified in-place.

process_training_data

def process_training_data(training_data: TrainingData,
model: MitieModel) -> TrainingData

Processes the training examples in the given training data in-place.

Arguments:

  • training_data - Training data.
  • model - A Mitie model.

Returns:

Same training data after processing.

features_for_tokens

def features_for_tokens(
tokens: List[Token],
feature_extractor: "mitie.total_word_feature_extractor"
) -> Tuple[np.ndarray, np.ndarray]

Calculates features.